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Abstract

This paper deals with an inverse problem concerning the identification of the heat exchange coeffi-
cient H (assumed depending on the temperature and/or pressure) between a certain material with the ex-
ternal environment, when only experimental measurements of the temperature are supposed to be known.
The main difficulties are that we consider the case of functions H depending on the solution of the state
equation and we use experimental data that may have errors. We develop rigorous mathematical strategies
for this identification. We consider separately pressure and temperature dependence and, in both cases,
we set several scenarios for the inverse problem. For each scenario, we know the initial and ambient
temperatures, we identify function H through different methods and we obtain error bounds in adequate
norms (uniform and square integrable). Finally, we perform numerical tests in order to compare the results
obtained with these algorithms and with some classical regularization algorithms.

1 Introduction
In this work, we focus our attention on an inverse problem concerning the identification of the heat trans-

fer coefficientH (assuming it depends on pressure or temperature) between a certain material with the exter-
nal environment. Some practical applications in which this coefficient appears can be seen in [7], [10], [11]
and [16].

The physical problem modeled in the references mentioned above is the evolution of the temperature
in a homogeneous sample of a material placed on a high pressure equipment which is, also, able to warm
or cool it. To describe the temperature distribution within the sample complex models based on partial
differential equations are often used (see, for example, [11]). These equations involve functions and param-
eters that must be known before computing the solution. These functions and parameters are determined
usually either by experimentation based protocols ([11]) or by solving inverse problems posed in an appro-
priate mathematical framework (see, e.g., [3], [4] and [6]). Other works regarding numerical approaches for
inverse problems can be seen in [8] and [9].

In some contexts, and under certain conditions, it can be assumed that H has a known expression (e.g.,
H is a function with a few real parameters to identify). In these cases, the least squares method may provide
a good tool for identifying those parameters (see, for instance, [7]). However, when the goal is to identify a
function, the problem becomes more complicated, especially if the function depends on the solution of the
state and the experimental data can be given with measurement errors. The challenge that we face in this
work is to identify function H when continuity and positivity are the only information available about H .
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For simplicity, let us consider an homogeneous sample and let us assume that the temperature gradient
inside it is negligible. The Newton Cooling Law and the relation describing the change in temperature due
to the pressure variation, when isentropic changes of temperature are assumed (see [16]), provide a simple
mathematical model for this phenomenon through the following initial value problem (direct problem):{

T ′(t) = H(T (t), P (t))(T e − T (t)) + αP ′(t)T (t), t ≥ t0

T (t0) = T0.
(1)

Here T (t) (K) is the temperature of the sample at time t; P (t) is the pressure of the equipment at time
t; T e is the temperature of the external environment; T0 is the temperature at the initial time t0; α ≥ 0
is the thermal diffusivity (involving thermal expansion, density and specific heat capacity); and H is the
pressure/temperature dependent heat transfer coefficient. In order to solve problem (1), constants T0, T e ∈
R, pressure curve P and function H : [Ta, Tb]× [Pmin, Pmax] → R are needed ([Ta, Tb] and [Pmin, Pmax] are
suitable ranges for temperature and pressure, respectively).

The values of T0 and T e can be obtained by measuring devices (thermocouples), the coefficient α is as-
sumed to be known and the pressure is provided by the equipment. However, functionH cannot be obtained
easily. We design strategies to identify function H , from experimental measurements (inverse problem); by
doing that, we are able to approximate the solution of model (1) for other data T0, T e and P (provided they
are kept in the initial ranges of temperature and pressure [Ta, Tb] and [Pmin, Pmax], respectively) without
requiring new measurements.

There are two main difficulties:

• Function H may depend on the solution of the state equation T .

• Temperature and pressure measurements can be given with errors, due to measurement equipment
accuracy limitations. This can be a serious drawback because of the ill–possedness of the problem
(see [13]).

We note that the value of H is not relevant when T is close to T e. So, we set a threshold µ to separate it
from T e (H(T, P ) is not identified for values of T too close to T e).

The identification of heat transfer coefficients has already been considered in previous works. An ex-
perimental procedure was proposed in [20] based on a genetic algorithm for determining a heat transfer
coefficient. In [1] and [14] some methods based on inverse analysis are developed in order to identify the
heat transfer on a machine tool surface. A method for the determination of the heat transfer coefficient was
proposed in [17] for the first falling drying period of potato cubes where heat and mass transfer were consid-
ered as coupled phenomena. In [5] an identification problem for the heat transfer coefficient in foods during
freezing using cooling curves obtained from an industrial survey is solved. The coefficient to be identified
is supposed to be constant in all the works cited in this paragraph, that do not use regularizing algorithms
able to compensate the sensitivity of the identification process to experimental measurement errors, as it is
done in this work.

The paper is organized as follows:

In Section 2 we consider the simplest case, in which the coefficient H depends only on the (known)
pressure. We design an ad hoc experiment for the determination of this coefficient. If this experiment cannot
be performed, we propose a numerical algorithm that allows to approximate function H (sometimes with
a greater accuracy than the previous method). Finally we present some numerical test comparing both
methods.

Section 3 deals with the case when H only depends on temperature. Then, we can assume that the
pressure remains constant, and so the second term on the right hand side of the equation of problem (1)
vanishes. As in Section 2, we also propose a numerical algorithm that allows to approximate function H
and we present some numerical test comparing the results of this iterative method with those obtained by
the classical regularization theory.
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2 Pressure Dependent Coefficient
This section is devoted to identify the heat transfer H of problem (1) when only pressure dependence is

assumed. Assuming that pressure increases from initial time t0 until instant tf , problem (1) becomes{
T ′(t) = H(P (t))(T e − T (t)) + αP ′(t)T (t), t ∈ [t0, tf ]

T (t0) = T0.
(2)

In order to define a suitable framework to carry out this identification, we suppose that:

• The external temperature T e (K) is a constant.

• The initial temperature T0 (K) is higher than T e.

• P is a known, non–decreasing, continuous and piecewise C1 function on the temporal interval [t0, tf ].

• H is a positive and continuous function on the pressure range [P0, Pf ] = [P (t0), P (tf)].

The temperature measurements are assumed to have been taken during an experiment in which the entire
range of pressures has been covered. In practice, a linear pressure can be used.

The following result collect the main qualitative properties of the solution of direct problem (2):

Proposition 2.1 Under assumptions above, the problem (2) has a unique solution T . This solution is the
continuous and piecewise C1 function

T (t) = (T0 − T e)eα(P (t)−P0)e
−

∫ t
t0

H(P (s)) ds

+ T e

(
1 +

∫ t

t0

αP ′(s)eα(P (t)−P (s))e−
∫ t
s
H(P (r)) dr ds

)
.

Moreover, denoting
Hm = min

s∈[P0,Pf]
H(s), HM = max

s∈[P0,Pf]
H(s),

inequalities

(T0 − T e)eα(P (t)−P0)e−HM (t−t0) + T e

(
1 +

∫ t

t0

αP ′(s)eα(P (t)−P (s))e−HM (t−s)ds

)
≤ T (t)

≤ (T0 − T e)eα(P (t)−P0)e−Hm(t−t0) + T e

(
1 +

∫ t

t0

αP ′(s)eα(P (t)−P (s))e−Hm(t−s)ds

)
,

hold for all t ∈ [t0, tf ]. In particular,

(T0 − T e) e−HM (tf−t0) + T e ≤ T (t) ≤ T0e
α(Pf−P0), t ∈ [t0, tf ]. 2 (3)

2.1 Scenarios of the inverse problems
Depending on the knowledge one has on the solution T in [t0, tf ], we consider the inverse problem

immersed in various scenarios:

• In the best case (and, in practice, unrealistic) that function T is known throughout the interval [t0, tf ]
(and also its derivative) under the assumption that H ∈ C([P0, Pf]) is positive, identification of H is
given by the equality

H(P (t)) =
T ′(t)− αP ′(t)T (t)

T e − T (t)
,
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due to the growth of P . Where P is strictly increasing, P is invertible and we can write

H(s) =
T ′(P−1(s))− αP ′(P−1(s))T (P−1(s))

T e − T (P−1(s))
.

If the pressure takes the constant value Pc in an interval, the quotient

T ′(t)− αP ′(t)T (t)

T e − T (t)
=

T ′(t)

T e − T (t)

is a constant function in this interval, so that we can take there any instant t∗ to determine (uniquely)
the value

H(Pc) =
T ′(t∗)

T e − T (t∗)
.

• In a second scenario we assume that T can be evaluated exactly in a finite number of arbitrary instants
in [t0, tf ]. The identification of H in [P0, Pf] can be treated as an approximate derivation standard
problem (in particular for the evaluation of T ′, which is unknown, unlike what happened in the
previous scenario).

• The following scenario arises when a function T̃ that represents the approximate value of the temper-
ature at any instant of time is supposed to be known.

• However, the usual situation is that only a discrete amount of values T̂k approximating the values of
T at the corresponding instants is known.

For the last three scenarios, we will develop a “stable” method to approximate T ′ from the data and
thereby obtain a discrete number of approximate values of H in points of interval [P0, Pf]. To this end, we
must ensure that the temperature values are sufficiently far from T e, otherwise the coefficient H have a
negligible influence in the equation, and its identification cannot be performed. For the latter two cases we
will set a certain “threshold” as follows:

a) In the third scenario, we suppose that T̃ satisfies∣∣∣∣∣∣T − T̃
∣∣∣∣∣∣
C([t0,tf ])

< δ.

We consider the threshold µ = m̃− T e, where

m̃ = min
t∈[t0,tf ]

T̃ (t). (4)

We always assume that µ > δ.

b) In the fourth scenario, we assume available a set of measurements T̂k such that |T (τk)− T̂k| < δ̂, with
δ̂ > 0, where {τ0 = t0, τ1, τ2, . . . , τp = tf} is a sequence of instants. We will denote by T̃ a function
that interpolates the values {T̂0, T̂1, . . . , T̂p} in points {τ0, τ1, . . . , τp} and consider δ > 0, a bound of
the norm of the difference between T and T̃ in the interval [t0, tf ], i.e.,∣∣∣∣∣∣T − T̃

∣∣∣∣∣∣
C([t0,tf ])

< δ.

The threshold µ is defined from T̃ as in the previous scenario.
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Figure 1: Ad hoc experiment.

2.2 Ad hoc experiment
Let us suppose we are in the fourth (more general) scenario and we can perform an ad hoc experiment,

which is designed as follows: in order to identify function H , we assume we know measurements of tem-
perature in an even number of instants {tk}nk=0, which form an equally spaced partition of [t0, tf ] with step
h. We choose the pressure applied by the equipment as a continuous function that increases linearly with
the same slope in the intervals

[t2k−1, t2k], k = 1, 2, . . . ,
n− 1

2
and remains constant in the rest of the intervals

[t2k, t2k+1], k = 0, 1, . . . ,
n− 1

2

(see Figure 1). Thus P (t2k) = P (t2k+1), k = 0, 1, . . . , n−1
2 and the values {P (t2k)}

n−1
2

k=0 form a partition
of the range of pressures [P0, Pf ].

Denoting by {T̂k}nk=0 the temperature measurements, we can find the approaches

H̃k ≃ H(P (t2k)), k = 0, 1, . . . ,
n− 1

2

through the following methodology: for each k ∈
{
0, 1, . . . , n−1

2

}
we consider the interval [t2k, t2k+1].

Here, since pressure is constant, the solution of problem (2) verifies

T ′(t) = H(P (t2k))(T
e − T (t)), t ∈ (t2k, t2k+1).

Then, T (t) = T e + (T (t2k)− T e)e−H(P (t2k))(t−t2k), t ∈ [t2k, t2k+1]. In particular, for t = t2k+1,

H(P (t2k)) =
1

t2k+1 − t2k
ln

(
T (t2k)− T e

T (t2k+1)− T e

)
=

1

h
ln

(
T (t2k)− T e

T (t2k+1)− T e

)
. (5)

This suggests taking as an approximation of the value of H at P (t2k) the value

H̃k =
1

h
ln

(
T̂2k − T e

T̂2k+1 − T e

)
. (6)

Denoting by Tk = T (tk) and σk =
T̂k − Tk
Tk − T e

, the following result holds:

Proposition 2.2 The error made by approximating the values of H by (6) is

H̃k −H(P (t2k)) =
1

h
ln

(
1 + σ2k

1 + σ2k+1

)
for k = 0, 1, . . . ,

n− 1

2
.
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DEMOSTRACIÓN. The definition of σk implies

T̂k − T e = (1 + σk)(Tk − T e) (7)

for k = 0, 1, . . . ,
n− 1

2
. Then, from (5) and (6),

H̃k −H(P (t2k)) =
1

h
ln

(
T̂2k − T e

T̂2k+1 − T e

)
− 1

h
ln

(
T2k − T e

T2k+1 − T e

)

=
1

h
ln

(
T̂2k − T e

T̂2k+1 − T e

T2k+1 − T e

T2k − T e

)

=
1

h
ln

(
(1 + σ2k)(T2k − T e)

(1 + σ2k+1)(T2k+1 − T e)

T2k+1 − T e

T2k − T e

)

=
1

h
ln

(
1 + σ2k

1 + σ2k+1

)
. 2

Remark Note that if, as in the second scenario, the temperature measurements are exact (and, conse-
quently, all σk vanish) then this method provides the exact values of H . 2

Remark The previous proposition also shows that the error made when approaching function H using this
method only depends on the values of 1 + σk, i.e., errors between T̂k − T e and Tk − T e (see (7)). As the
errors are a characteristic of the equipment, there is the unusual fact that the error in the approximation of
function H by this methodology is independent of the function. 2

2.3 Iterative algorithm
It may happen that the equipment does not allow an experiment as described in Section 2.2. Therefore,

different strategies are developed here, in order to identify coefficient H depending on the scenario we are
dealing with. First, for the scenario where we know a set of exact values of temperature, we propose to use
an approximate derivation operator of second order.

2.3.1 Identifying from a finite amount of exact values of temperature.

In this scenario we know n values of temperature T corresponding to instants of time tk = t0 + kh for

k = 0, 1, . . . , n, where h =
tf − t0
n

. We denote

Tk = T (tk) and Pk = P (tk), k = 0, 1, . . . , n.

From (2) we have

H(P (t)) =
T ′(t)− αP ′(t)T (t)

T e − T (t)
, t0 < t < tf . (8)

Thus, our goal is to find, for each k = 0, 1, . . . , n, an expression H̃k that approximates the quotient

T ′(tk)− αP ′(tk)Tk
T e − Tk

i.e., an approximation of H(Pk). To this end, we consider the approximate differentiation operator Rh :
C([t0, tf ]) → C([t0, tf ]) given by

Rh(v)(t) =



−3v(t) + 4v(t+ h)− v(t+ 2h)

2h
+Ψh(v)(t0), t ∈ [t0, t0 + h]

v(t+ h)− v(t− h)

2h
, t ∈ [t0 + h, tf − h]

3v(t)− 4v(t− h) + v(t− 2h)

2h
+Ψh(v)(tf − 3h), t ∈ [tf − h, tf ],
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where

Ψh(v)(t) =
v(t+ 3h)− 3v(t+ 2h) + 3v(t+ h)− v(t)

2h
.

Remark This approximate derivation operator provides an error bound slightly worse than that provided
by the standard operator of order 2 (without Ψh(v)). However, with this definition, Rh is an operator from
the Banach space of continuous functions with the L∞–norm to itself; this will allow us to establish, in
Section 3.2, an analogy with the classical methods there presented. 2

Let us denote by ||·|| the norm in C([t0, tf ]). The following result (whose proof can be seen in [10, pag.
50]) shows that Rh has order two:

Lemma 2.3 If v ∈ C3([t0, tf ]) then ||v′ −Rh(v)|| ≤
29

6
h2 ||v′′′|| . 2

The relation (8) and the operator Rh suggest to approximate the values H(Pk) by means of

H̃k =
Rh(T )(tk)− αP ′(tk)Tk

T e − Tk
,

for k = 0, 1, . . . , n. With this approximation, the following error estimate holds:

Proposition 2.4 Let T ∈ C3([t0, tf ]). Then

max
k=0,1,...,n

∣∣∣H(Pk)− H̃k

∣∣∣ ≤ 29M3

6(m− T e)
h2,

where M3 = ||T ′′′|| and m = min
k=0,1,...,n

Tk. 2

Remark Inequality (3) shows that m > T e and therefore the above estimate does not blow–up. 2

2.3.2 Identifying from a function that approximates the temperature.

In this context, an approximation T̃ ∈ C([t0, tf ]) of T is assumed to be known. More precisely,∣∣∣∣∣∣T − T̃
∣∣∣∣∣∣ < δ (9)

with 0 < δ < µ = m̃− T e, where m̃ is given in (4).

Again using expression (8), we define the function

u(t) =
T ′(t)− αP ′(t)T (t)

T e − T (t)
, t0 < t < tf

and its approximation

ũh(t) =
Rh(T̃ )(t)− αP ′(t)T̃ (t)

T e − T̃ (t)
, t0 < t < tf .

Let us estimate the error made in this approach:

Proposition 2.5 Let T ∈ C3([t0, tf ]) and T̃ ∈ C([t0, tf ]) verifying (9) with 0 < δ < µ. Then

||u− ũh|| ≤
1

µ− δ

(
29M3

6
h2 +

4δ

µh

(
M̃ − m̃+ 2µ

))
+
αP ′

MT
eδ

µ(µ− δ)
, (10)

where
m̃ = min

t∈[t0,tf ]
T̃ (t), M̃ = max

t∈[t0,tf ]
T̃ (t) and P ′

M = max
s∈[t0,tf ]

P ′(s).
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DEMOSTRACIÓN. First of all, let us note that |T e − T̃ (t)| = T̃ (t)− T e ≥ m̃− T e = µ

|T e − T (t)| = T (t)− T e ≥ T̃ (t)− δ − T e ≥ µ− δ.

Next, for each t ∈ [t0, tf ] we can write

|u(t)− ũh(t)| ≤

∣∣∣∣∣ T ′(t)

T e − T (t)
− Rh(T̃ )(t)

T e − T̃ (t)

∣∣∣∣∣+ αP ′
M

∣∣∣∣∣ T (t)

T e − T (t)
− T̃ (t)

T e − T̃ (t)

∣∣∣∣∣ . (11)

i) The first term of the right hand side of (11) can be estimated as∣∣∣∣∣ T ′(t)

T e − T (t)
− Rh(T̃ )(t)

T e − T̃ (t)

∣∣∣∣∣ ≤
∣∣∣∣T ′(t)−Rh(T )(t)

T e − T (t)

∣∣∣∣
+ |Rh(T )(t)|

∣∣∣∣∣ T (t)− T̃ (t)

(T e − T (t))(T e − T̃ (t))

∣∣∣∣∣+
∣∣∣∣∣Rh(T )(t)−Rh(T̃ )(t)

T e − T̃ (t)

∣∣∣∣∣ .
Now, the first term of this inequality can be bound (see Lemma 2.3) by

29h2

6 |T e − T (t)|
||T ′′′|| ≤ 29M3

6(µ− δ)
h2.

For the second and third terms, we consider three cases, according to the definition of the operator Rh:

a) For t ∈ [t0 + h, tf − h]

|Rh(T )(t)| ≤
(M̃ + δ)− (m̃− δ)

2h
=
M̃ − m̃+ 2δ

2h
.

Then

|Rh(T )(t)|

∣∣∣∣∣ T (t)− T̃ (t)

(T e − T (t))(T e − T̃ (t))

∣∣∣∣∣ ≤ M̃ − m̃+ 2δ

2h

δ

µ(µ− δ)
.

For the third term,∣∣∣∣∣Rh(T )(t)−Rh(T̃ )(t)

T e − T̃ (t)

∣∣∣∣∣ ≤
∣∣∣T (t+ h)− T̃ (t+ h)

∣∣∣+ ∣∣∣T (t− h)− T̃ (t− h)
∣∣∣

2hµ
≤ δ

µh
.

b) For t ∈ [t0, t0 + h]

|Rh(T )(t)| ≤
∣∣∣∣−3T (t) + 4T (t+ h)− T (t+ 2h)

2h

∣∣∣∣+ |Ψh(T )(t0)|

≤ 4((M̃ + δ)− (m̃− δ))

2h
+

4((M̃ + δ)− (m̃− δ))

2h

=
4(M̃ − m̃+ 2δ)

h
,

which implies

|Rh(T )(t)|

∣∣∣∣∣ T (t)− T̃ (t)

(T e − T (t))(T e − T̃ (t))

∣∣∣∣∣ ≤ 4(M̃ − m̃+ 2δ)

h

δ

µ(µ− δ)
.
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For the third term, we note that∣∣∣∣∣Rh(T )(t)−Rh(T̃ )(t)

T e − T̃ (t)

∣∣∣∣∣ ≤ 3
∣∣∣T (t)− T̃ (t)

∣∣∣
2hµ

+
4
∣∣∣T (t+ h)− T̃ (t+ h)

∣∣∣
2hµ

+

∣∣∣T (t+ 2h)− T̃ (t+ 2h)
∣∣∣

2hµ
+

∣∣∣Ψh(T )(t0)−Ψh(T̃ )(t0)
∣∣∣

µ
≤ 8δ

h
.

c) In the interval [tf − h, tf ], the same bounds as in [t0, t0 + h] can be obtained.

Collecting these three estimates, for t ∈ [t0, tf ] we have∣∣∣∣∣ T ′(t)

T e − T (t)
− Rh(T̃ )(t)

T e − T̃ (t)

∣∣∣∣∣ ≤ 29M3

6(µ− δ)
h2 +

4(M̃ − m̃+ 2δ)

h

δ

µ(µ− δ)
+

8δ

µh

=
1

µ− δ

(
29M3

6
h2 +

4δ

µh

(
M̃ − m̃+ 2µ

))
.

ii) For the second term of the right hand side of (11) we have∣∣∣∣∣ T (t)

T e − T (t)
− T̃ (t)

T e − T̃ (t)

∣∣∣∣∣ =
∣∣∣∣∣ T e(T (t)− T̃ (t))

(T e − T (t))(T e − T̃ (t))

∣∣∣∣∣ ≤ T e δ

µ(µ− δ)
. 2

In (10) the time step h appears multiplying (squared) in a term and dividing in another one. Conse-
quently, the optimal estimate is obtained when choosing a value of h that allows to balance both terms to
get the minimum value. Next result (whose prove is straightforward by using Proposition 2.5) indicates how
to choose such a value of h and its corresponding estimate:

Proposition 2.6 Let T ∈ C3([t0, tf ]) and T̃ ∈ C([t0, tf ]) verifying (9) with 0 < δ < µ. Then, the smallest
value of the bound in (10) is reached when taken as a time step

h∗ =

(
12(M̃ − m̃+ 2µ)

29µM3
δ

) 1
3

. (12)

For this optimal value of time step, the following error estimate holds

||u− ũh∗ || ≤ 1

µ− δ

(
522M3

(M̃ − m̃+ 2µ)2

µ2
δ2

) 1
3

+
αP ′

MT
e

µ(µ− δ)
δ. 2

Let h∗ be as in (12). Let us denote n the integer part of
tf − t0
h∗

, tk = t0 + kh∗ and T̃k = T̃ (tk). If we

approximate H(Pk) by

H̃k = ũh∗(tk) =
Rh∗(T̃ )(tk)− αP ′(tk)T̃k

T e − T̃k
, (13)

for k = 0, 1, . . . , n, Proposition 2.6 leads to the main result of this section:

Theorem 2.7 Under the assumptions in Proposition 2.6 one has

max
k=0,1,...,n

∣∣∣H(Pk)− H̃k

∣∣∣ ≤ 1

µ− δ

(
522M3

(M̃ − m̃+ 2µ)2

µ2
δ2

) 1
3

+
αP ′

MT
e

µ(µ− δ)
δ,

where H̃k, k = 0, 1, . . . , n, are given in (13). 2

Remark Theorem 2.7 provides a bound on the error made when we approximate H taking as time step the
optimum value h∗. The difficulty is that this value is unknown, since it depends on M3. In Section 2.3.3
we introduce an iterative algorithm in order to compute the values given in (13), from measurements of
temperature, and successive approximations of h∗. 2
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2.3.3 Identifying from a finite number of approximated values of the temperature.

The starting point now is that we have measurements of temperature {T̂0, T̂1, . . . , T̂p} corresponding to
the instants {τ0 = t0, τ1, τ2, . . . , τp = tf} and we assume that the error is of order δ̂.We consider a function
T̃ that interpolates the previous values and assume that the interpolation method used is such that the error
δ with respect to T is of the order of measurement error δ̂, i.e.,

δ = Cδ̂.

To do this, eventually, it could be necessary to increase the number of measurements.

Once function T̃ is defined in this way, we are in the situation of the previous section; hence it suffices

to consider the threshold µ = m̃ − T e, take the time step h as in (12) and n as the integer part of
tf − t0
h

.

Thus, the values H̃k in (13) provide an approximation of H with an error estimate given in Theorem 2.7.

Next, we describe an algorithm to approximate the values of H at points Pk = P (tk) ∈ [P0, Pf ], for
instants tk in equally spaced partitions of [t0, tf ]. The time step of these partitions should be defined, in an
iterative way, approaching the value of h∗.

The input data are: {T̂k}pk=0 and δ̂ > 0. First of all, we construct a function T̃ (t) interpolating {T̂k}pk=0.
Next, we estimate the error δ > 0 due to the interpolation. Then, the admissible threshold µ = m̃ − T e,
under the constraint µ > δ, is obtained.

The algorithm is based on an iterative process beginning from a guess value of h for the optimal time
step h∗. From this value, we consider the instants tk = t0 + kh, k = 0, 1, . . . , n, where n is the integer part

of
tf − t0
h

. Therefore, the values T̃k = T̃ (tk) are obtained. From these values, an approximation Λ3 of M3

is computed as the maximum absolute value of

−5T̃k + 18T̃k+1 − 24T̃k+2 + 14T̃k+3 − 3T̃k+4

2h3
, k = 0, 1

T̃k+2 − 2T̃k+1 + 2T̃k−1 − T̃k−2

2h3
, k = 2, 3, . . . , n− 2

3T̃k−4 − 14T̃k−3 + 24T̃k−2 − 18T̃k−1 + 5T̃k
2h3

, k = n− 1, n.

(14)

These formulas are based, respectively, on standard order two progressive, central and backward approxi-
mate derivative schemes of a regular function.

From Λ3, the next value of the time step is computed (following (12)) as

h =

(
12(M̃ − m̃+ 2µ)

29µΛ3
δ

) 1
3

, (15)

and so on.

The process stops when two consecutive values of h are close. From the final value of h, the corre-
sponding instants tk, interpolation T̃ and the quotients

H̃k = ũh(tk) =
Rh(T̃ )(tk)− αP ′(tk)T̃k

T e − T̃k
, (16)

are computed. These quantities approach the values of H in the pressures Pk = P (tk), for k = 0, 1, . . . , n.
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Algorithm

DATA {T̂k}pk=0: Temperature measurements at times {τk}pk=0.
δ̂ > 0: bound of measurements errors.
ε: stopping test precision.
h: guess value of h∗.

Step 1: Determine T̃ and δ according to δ̂ so that µ = m̃− T e > δ.
Step 2: While the relative error in h is greater than ε:

a) Determine the new discrete instants {tk} and compute {T̃k}.
b) Compute Λ3 as the maximum absolute value of (14).
c) Compute the new value of h as in (15).

Step 3: Obtain the final discrete instants {tk} and the values {T̃k}.
Step 4: Compute the approximations H̃k according to (16).

2.4 Nondimensionalization of the problem
Before performing the numerical experiments with different sets of data illustrating the behavior of

the methods developed, it is convenient to nondimensionalize the problem. We want the model to involve
as few dimensionless parameters as possible. Here, it suffices to consider two parameters: the pressure
and a relationship between the initial and ambient temperature, as discussed below. We consider the new
dimensionless variables

t∗ =
t− t0
tf − t0

, T ∗(t∗) =
T (t)− T e

T0 − T e
and P ∗(t∗) =

(
P (t)− P0

)
α.

Problem (2) can be written in these new variables (see [10, pag. 57]) as
dT ∗

dt∗
(t∗) = −H∗(P ∗(t∗))T ∗(t∗) +

dP ∗

dt∗
(t∗) (T ∗(t∗) + T ea) , t∗ ∈ (0, 1)

T ∗(0) = 1,

(17)

where 
H∗(s) = (tf − t0)H

(
s

α
+ P0

) (
⇒ H∗(P ∗(t∗)) = (tf − t0)H(P (t))

)
T ea =

T e

T0 − T e
.

We use this approach to identify coefficient H∗ and to find the temperature distribution for several
functions P ∗ and several values of T ea.

Remark After identifying function H∗, H can be obtained by

H(s) =
1

tf − t0
H∗ (α(s− P0)) , s ∈ [P0, Pf ]. (18)

From T ∗ we can express temperature T as

T (t) = T e + (T0 − T e)T ∗
(
t− t0
tf − t0

)
, t ∈ [t0, tf ]. 2

Remark If the order of magnitude of function H∗ is small compared with

dP ∗

dt∗
(t∗) (T ∗(t∗) + T ea) ,

this term will be dominant. Hence any function H∗ of that order of magnitude would provide values of
temperature with few differences. To avoid this problem we can modify the original experiment so that the
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new one results in a function H∗ of a higher order of magnitude. If pressure in the original experiment is
given by

P (t) = a(t− t0) + P0, t ∈ [t0, tf ],

a slower increase pressure (for a longer time in order to cover the same range of pressures [P0, Pf ]) could
be considered. That is, we can take

P1(t) = ac(t− t0) + P0, t ∈
[
t0, t0 +

tf − t0
c

]
,

with 0 < c ≤ 1. If T1 is the temperature obtained with this pressure, the changes of variable

t∗1 =
c(t− t0)

tf − t0
, T ∗

1 (t
∗
1) =

T1(t)− T e

T0 − T e
and P ∗

1 (t
∗
1) =

(
P1(t)− P0

)
α

lead to 
dT ∗

1

dt∗1
(t∗1) = −1

c
H∗(P ∗

1 (t
∗
1)
)
T ∗
1 (t

∗
1) +

dP ∗
1

dt∗1
(t∗1) (T

∗
1 (t

∗
1) + T ea) , t∗1 ∈ (0, 1)

T ∗
1 (0) = 1.

(19)

Since
dP ∗

1

dt∗1
(t∗1) = αa(tf − t0) =

dP ∗

dt∗
(t∗),

the equations of problems (17) and (19) are identical, except that the new function H∗ is amplified by the

factor
1

c
≥ 1. 2

Remark The dimensionless problem is governed by an equation different from the original, and this will
be taken into account in the methods we will use:

a) For the method based on an ad hoc experiment in Section 2.2 it suffices to note that, in each interval
when the pressure is constant, the temperature satisfies the same equation but with T e = 0. We must
therefore consider the approaches

H̃k =
1

h
ln

(
T̂2k

T̂2k+1

)
instead of (6).

b) Concerning the iterative algorithm of Section 2.3, we can say that the optimal step expression (15) and
the quantities (14) that are used for the calculation of Λ3 remain the same (changing, of course, the roles
of T̃ and T̃ ∗), while the approximation (16) of H̃k becomes

H̃k = −
Rh(T̃ ∗)(t∗k)−

dP ∗

dt∗
(t∗k)(T̃

∗
k + T ea)

T̃k
. 2

2.5 Numerical Results
In this section we perform a comparative study of the results obtained when using the methods consid-

ered for the identification of function H . While working on the nondimensional problem, the value of T ea

and the range of pressures are linked to a real situation. Specifically, we use the P2 treatment data consid-
ered in [11], i.e., T0 = 313 oK, T e = 295 oK and α = 4.5045× 10−5 MPa−1. The pressure increases from
atmospheric pressure up to 360 MPa.

For the iterative algorithm, we suppose that the experiment has been done with a linear pressure curve
with slope a. For the ad hoc experiment, we suppose the same slope a for the pressure curve when it is non
constant. Therefore, the time interval for the ad hoc experiment, is twice as long as that of the iterative one.
Then, according to (18), the function H∗ corresponding to the ad hoc experiment is twice the function H∗

corresponding to the iterative algorithm.
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Figure 2: Considered pressures for the numerical tests after identification of H .

The maximum value of dimensionless pressure is a∗ = 360α = 0.0162 in both approaches. We point
out that since t∗ ∈ [0, 1], the slope of the nondimensional pressure for the ad hoc experiment is 2a∗ when it
is not constant, while it is a∗ in the equation considered for the iterative algorithm.

For the sake of simplicity, from now on, we omit the superscript ∗.

The data for numerical tests have been obtained as follows: with a given function H , we solve direct
nondimensional problem (17), obtaining the temperature T . Then T is evaluated on an equally spaced
partition of instants of time. We assume that in both experiments, the measurements have been carried out
with the same step, so that we work in the first method with twice the values in the second (in particular,
we take 200 values Tk = T (tk) in the ad hoc experiment and 100 values in the iterative algorithm). The
error measurements T̂k are built by perturbing Tk by means of random oscillations of order 1% of Tk. More
precisely,

T̂k = Tk

(
1 +

r(tk)

75

)
,

where r(t) = sin(qπt) and q is a random integer between 1 and 99. Function T̃ is taken as the piecewise
linear interpolation of values T̂k.

To allow an easy comparison, the same seven perturbations of temperature values have been generated,
corresponding to the values q = 3, 14, 27, 42, 65, 84 and 97. Among them we selected the two which
produces the smallest and the largest error in L∞–norm in H , respectively.

After identifying an approximation of function H , we compute the temperature T solving problem (17)
and we compare it with the known solution of the direct problem. Also, different values for dimensionless
parameters of the problem (the pressure curve and T ea) are prescribed and the corresponding solutions are
calculated. In order to analyze the quality of the identification, these solutions are compared to the exact
temperature.

The different values of the parameters are generated by multiplying by the factors d = 2, d = 1 and
d = 1

2 the original value of T ea and choosing as pressure curves (see Figure 2)

P (t) = a sin t, P (t) = a(e2t−2 − e−2) and P (t) =
a

2
t(3− t).

In all figures and tables “Error” denotes the L∞–norm error in H and “% Error” denotes the percentage
relative error in maximum norm of T , i.e.,

max
k

|T̃k − Tk|

max
k

|Tk|
× 100.
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Figure 3: Ad hoc algorithm (Top: smallest error in H . Bottom: largest error in H)

2.5.1 First method: ad hoc experiment

For this method, the value for the first parameter of the nondimensional problem is T ea =
295

18
, while

the slope of the pressure (where not constant) is 0.0324 (= 2a); what causes the pressure to take all values
in the pressure range [0, a] when time lies in [0, 1]. We consider the function

H(s) = 4 exp
( s
a

)
.

Figure 3 shows the identified function H (and corresponding computed temperature) for the smallest and
largest error in H .

Table 1 shows the percentage relative error in maximum norm of T (% Error) for each of the nine data
sets considered, both for the smallest and largest error in H .

Table 1: % Error for the ad hoc experiment and considered pressures: smallest (above) and largest (below) error in H .

Pressure Factor over parameter T ea

d = 2 d = 1 d = 0.5
sinusoidal 0.48 0.48 0.47

exponential 0.87 0.86 0.85
quadratic 0.36 0.36 0.36
sinusoidal 1.37 1.36 3.84

exponential 5.11 5.10 5.09
quadratic 1.06 1.97 2.45



Identification of a Heat Transfer Coefficient Depending on Pressure and Temperature 15

The error in this method (we remind that it provides exact values when there are not measurement
errors) increases with the frequency of the oscillatory perturbation: the error in H grows with the value of
q, being smaller for q = 3 (the smoother perturbation) and larger for q = 97 (more oscillatory perturbation).
The interested reader can see the details in [10].

2.5.2 Second method: iterative algorithm

Now, the value T ea =
295

18
is the same as before, but the pressure increase changes (since now there is

no constant steps); in fact, P (t) = 0.0162t.
As already mentioned, the corresponding function to the original H must be half of the chosen in the

previous method, i.e.,
H(s) = 2 exp

( s
a

)
.

Figure 4 shows the identified function H (and corresponding computed temperature) for the smallest and
largest error in H .

Table 2 shows the percentage relative error in temperature (in maximum norm) for each of the nine data
sets considered, both for the smallest and largest error in H .

Table 2: % Error for the iterative algorithm and considered pressures: smallest (above) and largest (below) error in H .

Pressure Factor over parameter T ea

d = 2 d = 1 d = 0.5
sinusoidal 0.17 0.16 0.15

exponential 0.17 0.17 0.17
quadratic 0.14 0.13 0.13
sinusoidal 1.49 1.49 1.49

exponential 4.46 4.44 4.44
quadratic 0.94 0.94 0.94

This algorithm uses interpolation of approximate values of T at instants that are not the same as those
used for the temperature measurements. Therefore, in contrast with what happens in the above method (see,
Section 2.5.1), their behavior is not directly linked to the frequency of oscillatory perturbations.

In conclusion, although the size of the error in H is moderate for both methods, temperatures calculated
from approximate identifications are quite accurate (the error is always of the order of measurement error).
The first method usually provides a better approximation of the temperature when solving for the initial
parameters used to identifyH . However, when the identified temperature for the nine data sets is considered,
the second method is generally more accurate in the case of largest error in H and therefore it can be
considered more robust.

3 Temperature Dependent Coefficient
This section deals with the case where the coefficient of heat transfer to be identified depends on the

temperature (instead of pressure). The fact that H depends on the solution of the state equation complicates
the resolution of the inverse problem. On the other hand, the fact that H does not depend on the pressure
allows to work at constant pressure.

Therefore, the problem (1) becomes{
T ′(t) = H(T (t))(T e − T (t)), t ≥ t0

T (t0) = T0
(20)

and we work under the following hypothesis:
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Figure 4: Iterative algorithm (Top: smallest error in H . Bottom: largest error in H)

• The external temperature T e is constant.

• The initial temperature T0 is lower than T e (a quite similar study could be done if it were assumed
that T0 > T e). As we will see below, This ensures that the solution T is an increasing function that
takes its values in the range [T0, T

e].

• H is a continuous and positive function in the interval [T0, T e].

The following result collect the main qualitative properties of the solution of the direct problem (20):

Proposition 3.1 Under assumptions above, the problem (20) has a unique solution T satisfying:

a) T is well defined for all t ≥ t0 and T ∈ C1([t0,+∞)).

b) T ′(t) > 0 for all t ≥ t0 and so, T is an increasing function.

c) T0 ≤ T (t) < T e for all t ≥ t0.

d) For every t ≥ t0, inequalities

T e − (T e − T0)e
−Hm(t−t0) ≤ T (t) ≤ T e − (T e − T0)e

−HM (t−t0),

hold, where Hm = min
s∈[T0,T e]

H(s) and HM = max
s∈[T0,T e]

H(s).

e) lim
t→+∞

T (t) = T e, i.e., all solutions go asymptotically to the unique equilibrium value T e of the differ-

ential equation.

f) For every t ≥ t0,

Hm(T e − T0)e
−HM (t−t0) ≤ T ′(t) ≤ HM (T e − T0)e

−Hm(t−t0). 2
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We are interested in identifying H in a range of temperatures as wide as possible. To do this, it is ad-
visable to take measurements during an experiment that starts with an initial temperature as low as possible
and an ambient temperature as high as possible.

3.1 Scenarios of the inverse problem.
The model is not very sensitive to changes inH(s) for s close to T e. For this reason, it is unrealistic (and

unnecessary) pretend to identifyH near T e. These considerations lead us to pose the problem of identifying
function H as follows:

i) A threshold µ > 0, depending on the admissible error in the approximation of the temperature, is fixed
so that the identification of H in the interval [T e − µ, T e] is not part of our goal. From this threshold,
a time tf = tf(µ, T0, T

e, H) is determined (by arguments explained later) such that

|T e − T (t)| ≤ µ, t ≥ tf . (21)

Thus, the error in the temperature will be smaller than µ for t ≥ tf .

ii) We use model (20) in [t0, tf ] and identify H in [T0, T (tf)] ⊃ [T0, T
e − µ].

As in Section 2, according to the available information about T in [t0, tf ], we set the inverse problem in
several scenarios:

• The trivial (and unrealistic) case is to suppose that functions T and T ′ are known in [t0, tf ]. Then,
assuming H ∈ C([T0, T (tf)]) and positive, we can identify H in a direct way from

H(s) =
T ′(T−1(s))

T e − s
.

• If function T can be evaluated without error in a finite number of arbitrary instants t ∈ [t0, tf ],
the identification of H in [T0, T (tf)] becomes, as in Section 2, a standard problem of numerical
differentiation (in order to approximate T ′ from data).

• Next scenario arises when a function T̃ , representing an approximate value of the temperature in
every instant, is supposed to be known.

• However, in a realistic context, only discrete values T̂k approximating the temperature at some in-
stants are available.

For the last three scenarios we use a method to approach T ′ from data. Let us see how to determine tf
satisfying (21) in the situations described before:

a) For the first scenario, the value of tf (more precisely, the minimum value of tf verifying (21)) is the
solution of the equation T (t) = T e − µ, i.e.

tf = T−1(T e − µ).

b) In the second scenario, we will consider only the values of T lower than T e − µ. So, given p + 1
exact values {T0, T1, . . . , Tp} of the temperature at instants {τ0 = t0 < τ1 < · · · < τp}, we consider
µk = T e − Tk. Then µ is changed by one of the values µk. If the threshold µ is lower than all quantities
µk, we take µ = µp and tf = τp; otherwise, we define m = max{k : µ ≤ µk} and we take µ = µm

and tf = τm.

c) The assumptions in the third scenario are that function T̃ is known in some interval [t0, t∗] and∣∣∣∣∣∣T − T̃
∣∣∣∣∣∣
C([t0,t∗])

< δ,

where δ < µ (if µ ≤ δ we would need to increase the value of µ). Then, we choose tf as follows:
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• If T̃ (t) < T e −µ+ δ for all t ≤ t∗ we take tf = t∗, and we must increase the value of µ by taking
µ = T e − T̃ (t∗) + δ.

• Otherwise, we consider tf = min{t : T̃ (t) = T e − µ+ δ}.

To sum up, we choose

tf =

{
t∗, if T̃ (t) < T e − µ+ δ for all t ≤ t∗

min{t : T̃ (t) = T e − µ+ δ}, otherwise,
(22)

with the appropriate value of µ. Note that (22) ensures

T (t) ≥ T (tf) ≥ T̃ (tf)− δ = T e − µ, t ≥ tf ,

i.e., the approximate temperature values that are not used correspond to instants at which the exact
temperature is outside the admissible range. Moreover, the choice of tf and the monotonicity of T ,
imply 

T̃ (t) ≤ T̃ (tf)

T e − T (t) ≥ T e − T (tf) ≥ T e − T̃ (tf)− δ = µ− 2δ

T e − T̃ (t) ≥ T e − T̃ (tf) = µ− δ

(23)

for t ≤ tf . To ensure that these lower bounds are positive, we will impose to the threshold the restriction
µ > 2δ.

d) Finally, in the fourth scenario, measurements {T̂k}pk=0 such that |T (τk) − T̂k| < δ̂, with δ̂ > 0, are
available. Let T̃ be an interpolation function of values {T̂0, T̂1, . . . , T̂p} in {τ0, τ1, . . . , τp} such that∣∣∣∣∣∣T − T̃

∣∣∣∣∣∣
C([τ0,τp])

< δ

for some δ > 0. From this function T̃ the choice of tf is made as in the previous scenario.

3.2 Regularization theory. Classical algorithms.
Let us suppose the fourth scenario (the more general one) exposed in Section 3.1. Once tf is determined,

we consider the initial value problem{
T ′(t) = H(T (t))(T e − T (t)), t ∈ [t0, tf ]

T (t0) = T0.
(24)

By denoting u(t) = H(T (t)), t ∈ [t0, tf ], we have that∫ t

t0

u(s) ds =

∫ t

t0

T ′(s)

T e − T (s)
ds = − ln

(
T e − T (t)

T e − T0

)
.

Thus, for suitable functional spaces X and Y , by defining the operator K : X → Y as

Kx(t) =

∫ t

t0

x(s) ds,

we have that Ku = y, where

y(t) = − ln

(
T e − T (t)

T e − T0

)
, t ∈ [t0, tf ]. (25)

Note that function y is well defined and it is positive (see Proposition 3.1). In order to apply the classical
regularization theory for inverse problems in Hilbert spaces (see, e.g., [2], [12], [13]), we choose X = Y =
L2(t0, tf).

Next result shows some well–known properties (see, for example, [10]) of operator K:
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Proposition 3.2 K : L2(t0, tf) → L2(t0, tf) is a linear and compact operator. Moreover:

a) ||K|| ≤ tf − t0√
2

(here ||·|| denotes the L
(
L2(t0, tf), L

2(t0, tf)
)

norm).

b) For every x ∈ L2(t0, tf), Kx ∈ H1(t0, tf) and (Kx)′ = x.

c) K is an injective operator and range(K) = {y ∈ H1(t0, tf) : y(t0) = 0} is a dense set in L2(t0, tf).

d) The adjoint operator K∗ : L2(t0, tf) → L2(t0, tf) is given by

K∗y(t) =

∫ tf

t

y(s) ds. 2

In our problem we have measurements T̂k verifying |T (τk)− T̂k| < δ̂, and an interpolation function T̃
such that

∣∣∣∣∣∣T − T̃
∣∣∣∣∣∣
C([τ0,τp])

< δ. This provides a right hand term

yδ(t) = − ln

(
T e − T̃ (t)

T e − T0

)
(26)

and the approximate problem
Kuδ = yδ.

Remark The third estimate of (23) ensures that yδ ∈ H1(t0, tf) if the chosen interpolation T̃ is regular
(for example, piecewise linear). The absence of error in the initial temperature implies yδ(t0) = 0 and then
yδ belongs to range(K). 2

Next proposition estimates the error between yδ and y in terms of error between T̃ and T (given by δ).

Proposition 3.3 Let y(t) and yδ(t) given by (25) and (26), respectively. By denoting

e(δ) =

√
tf − t0
µ− 2δ

δ, (27)

the estimate ||y − yδ||L2(t0,tf)
≤ e(δ) holds.

DEMOSTRACIÓN. A first order Taylor expansion of function s 7→ ln(T e − s) around s = T (t), provides

|y(t)− yδ(t)| =
∣∣∣ln(T e − T̃ (t))− ln(T e − T (t))

∣∣∣ = ∣∣∣∣∣T (t)− T̃ (t)

T e − Tθ

∣∣∣∣∣ ,
where Tθ is a value between T (t) and T̃ (t) which can be written as

Tθ = θT (t) + (1− θ)T̃ (t)

for some 0 < θ < 1. Estimates (23) imply

T e − Tθ = θ(T e − T (t)) + (1− θ)(T e − T̃ (t))

≥ θ(µ− 2δ) + (1− θ)(µ− δ)

= µ− (1 + θ)δ ≥ µ− 2δ.

Thus,

|y(t)− yδ(t)| ≤
|T (t)− T̃ (t)|

µ− 2δ
≤ δ

µ− 2δ
,

which allows to conclude the result easily. 2

Next, we describe two of the classic strategies of regularization: Tikhonov and Landweber methods.
These methods are implemented in Section 3.4 for several test problems.
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3.2.1 Tikhonov regularization. Discrepancy Principle of Morozov

The Tikhonov strategy to solve Kuδ = yδ, (see, for instance, [18], [19]) consists of minimizing the
Tikhonov functional

Jα(x) = ||Kx− yδ||2L2(t0,tf )
+ α ||x||2L2(t0,tf )

,

where α = α(δ) > 0 is suitable chosen. Jα has a unique minimum uα,δ (see, for instance, Theorem 2.11
of [13]), which is also the unique solution of the normal equation

(α+K∗K)x = K∗yδ. (28)

The regularization strategy is given for the linear operators Rα : L2(t0, tf) → L2(t0, tf) defined by

Rαy = (α+K∗K)−1K∗y.

For α = 0 this becomes the normal equation associated to operator K. Since this operator is injective and
compact in an infinite–dimensional space, K is not surjective; then, minimizing operator J0 is an ill–posed
problem (see [13], Lemma 2.10). For this reason, a penalty term α ||x||2L2(t0,tf)

is added.

Let us see that the solution of (28) also solves a boundary value problem of second order.

Proposition 3.4 The solution uα,δ of (28) is the solution of the boundary problem{
−αx′′(t) + x(t) = y′δ(t), t ∈ (t0, tf)

x′(t0) = 0, x(tf) = 0.
(29)

Moreover, denoting γ(r) =
tf − r√

α
, the solution is

uα,δ(t) =
1√
α
(φα,δ(t) cosh γ(t) + ψα,δ(t) sinh γ(t)) ,

where

φα,δ(t) =

∫ tf

t

y′δ(s) sinh γ(s) ds

and

ψα,δ(t) =

∫ t

t0

y′δ(s) cosh γ(s) ds− tanh γ(t0)φα,δ(t0).

DEMOSTRACIÓN. Proposition 3.2 allows to write equation (28) as

αx(t) +

∫ tf

t

(∫ s

t0

x(τ) dτ

)
ds =

∫ tf

t

yδ(s)ds.

Thus x(tf) = 0. Further, since yδ ∈ R(K), we have yδ ∈ H1(t0, tf) and yδ(t0) = 0. Therefore, by
differentiating the above expression, we obtain

αx′(t)−
∫ t

t0

x(s) ds = −yδ(t),

and, in particular, x′(t0) = −yδ(t0) = 0. By differentiating again, we get to

αx′′(t)− x(t) = −y′δ(t).

Finally, standard calculations for solving the boundary value problem (29) lead to the above expression
for uα,δ. 2
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Remark Since ||y − yδ||L2(t0,tf )
≤ e(δ) (see Proposition 3.3), by choosing α(δ) satisfying

lim
δ→0

α(δ) = 0 and lim
δ→0

(e(δ))2

α(δ)
= 0,

the Theorem 2.12 of [13] states that the Tikhonov regularization strategy for our problem is admissible, i.e.,

lim
δ→0

∣∣∣∣uα(δ),δ − u
∣∣∣∣
L2(t0,tf)

= 0. 2

Remark Note that, for every α ̸= 0, the solution of problem (29) vanishes in tf . This is because the bound-
ary condition is, in fact, αx(tf) = 0. This constraint appears in the approaches based on Tikhonov’s strategy
when working in L2(t0, tf). Therefore, although the error in L2(t0, tf) is small, the error in the maximum
norm may be large. In order to avoid this problem we develop an alternative methodology in Section 3.3. 2

The Morozov’s discrepancy principle (see [15]) provides a way to choose the parameter α = α(δ) for
the Tikhonov regularization strategy: it is chosen so that the solution uα(δ),δ of (28) satisfies∣∣∣∣Kuα(δ),δ − yδ

∣∣∣∣
L2(t0,tf )

= e(δ), (30)

supposing that
||y − yδ||L2(t0,tf)

≤ e(δ) < ||yδ||L2(t0,tf )
.

The regularization strategy associated to this choice of α(δ) is admissible (see Theorem 2.17 of [13]).

3.2.2 Landweber’s iterative method.

Landweber’s iterative method is defined as{
x0 = 0

xm = (I − λK∗K)xm−1 + λK∗yδ, m = 1, 2, . . . ,
(31)

where λ > 0. Using Theorem 2.19 of [13], we choose λ such that

0 < λ <
1

||K||2
(32)

and we consider the stopping test

||Kxm − yδ||2L2(t0,tf)
≤ r(e(δ))2,

for some r > 0 satisfying ||yδ|| ≥ re(δ) for all δ ∈ (0, δ0).

Remark The bound of ||K|| in Proposition 3.2 states that if we choose λ satisfying

0 < λ <
2

(tf − t0)2
,

the condition (32) is fulfilled. 2

Remark Since x0(tf) = 0 and K∗(x(tf)) = 0 for any function x, every iteration of Landweber method
also satisfies xm(tf) = 0.

Again, the approximations obtained by this method will have this bad property. 2

3.3 Iterative algorithm
We present in this section the adaptation of the arguments in Section 2.3 to the current problem. Again,

we collect the different ways to address the problem of identifying the coefficient H according to the
information about the temperature, i.e., the corresponding scenario of the inverse problem. In all cases, we
assume that the value of tf is set as prescribed in Section 3.1 and, therefore, the direct problem is (24).
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3.3.1 Identifying from a finite amount of exact values of temperature.

Given n ∈ N, the values of the temperature T at tk = t0 + kh for k = 0, 1, . . . , n, are supposed to

be known, where h =
tf − t0
n

. Let us denote Tk = T (tk), k = 0, 1, . . . , n. The differential equation of
problem (24) can be rewritten as

T ′(t)

T e − T (t)
= H(T (t)), t0 < t < tf . (33)

Therefore, our goal is to find, for k = 0, 1, . . . , n, an approximation H̃k of

T ′(tk)

T e − T (tk)
,

which is also an approximation of H(Tk). We consider again the continuous approximate differentiation
operator Rh : C([t0, tf ]) → C([t0, tf ]) given in Section 2.3.1. In order to approach H(Tk) we take

H̃k =
Rh(T )(tk)

T e − Tk
,

for k = 0, 1, . . . , n. Thus, Lemma 2.3, leads to the following estimate of error:

Proposition 3.5 If T ∈ C3([t0, tf ]) then

max
k=0,1,...,n

∣∣∣H(Tk)− H̃k

∣∣∣ ≤ 29M3

6µ
h2,

where M3 = ||T ′′′||. 2

3.3.2 Identifying from a function that approximates the temperature.

In this context, we suppose to have a function T̃ ∈ C([t0, tf ]), where tf is chosen according to (22) and∣∣∣∣∣∣T − T̃
∣∣∣∣∣∣ < δ (34)

for some δ ∈ (0, µ). For the sake of simplicity and consistency with the properties of T, we assume that
T̃ (t) ≥ T0, t ∈ [t0, tf ]. From (33), we define

u(t) =
T ′(t)

T e − T (t)
, t0 < t < tf

and the approximation

ũh(t) =
Rh(T̃ )(t)

T e − T̃ (t)
, t0 < t < tf .

Next, an error estimate is obtained:

Proposition 3.6 If T ∈ C3([t0, tf ]) and T̃ ∈ C([t0, tf ]) satisfies (34) with 0 < δ <
µ

2
, then

||u− ũh|| ≤
1

µ− 2δ

(
29M3

6
h2 +

4δ

h

T e − T0 + µ− 2δ

µ− δ

)
. (35)

DEMOSTRACIÓN. It suffices to argue as in Proposition 2.5, taking into account estimates (23). 2
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Remark It is interesting to analyze the estimate (35) in the context of regularization strategies, although the
functional framework is different, since the regularization theory followed above has been posed in Hilbert
spaces.

We consider the operator
K : C([t0, tf ]) → C([t0, tf ])

defined as follows: for each u ∈ C([t0, tf ]) we take Ku = T where T is the solution of problem{
T ′(t) = u(t)(T e − T (t)), t ∈ [t0, tf ]

T (t0) = T0,

i.e., T (t) = T e − (T e − T0)e
−

∫ t
t0

u(s) ds. Now, we define the operator’s family

Rh : C([t0, tf ]) → C([t0, tf ])

as

Rhy =
Rh(y)

T e − y
.

This family is a regularization strategy for the operator K; here h is the regularization parameter. Thus,
the methods in this section can be considered in the framework of regularization theory but in the space of
continuous function.

The term
1

µ− 2δ

(
29M3

6
h2
)

in (35) is the one corresponding to ||RhKu− u|| in the standard inequality

||xα,δ − x||X ≤ δ ||Rα||+ ||RαKx− x||X

for the Hilbert framework (see [13, pag. 26]). The second term of the right hand side of (35) corresponds to
the term δ ||Rh|| in the above inequality.

Consequently, we choose the parameter h in terms of δ in order to minimice the bound in (35). 2

The following result determines how to carry out this minimization:

Proposition 3.7 Under the assumptions of Proposition 3.6, the minimum value for the right hand side
of (35) is obtained for

h∗ =

(
12(T e − T0 + µ− 2δ)

29(µ− δ)M3
δ

) 1
3

. (36)

In this case, estimate (35) becomes

||u− ũh∗ || ≤ 1

µ− 2δ

(
522M3

(T e − T0 + µ− 2δ)2

(µ− δ)2
δ2
) 1

3

.

DEMOSTRACIÓN. It suffices to argue as in Proposition 2.6. 2

Remark Again in the context of regularization theory, the above result proves that the family of operators
Rh defined in Remark 3.3.2 is an admissible regularization strategy when h is taken according to (36). 2

From Proposition 3.7, choosing h∗ as in (36), taking n as the integer part of
tf − t0
h∗

, denoting tk =

t0 + kh∗, T̃k = T̃ (tk) and

H̃k = ũh∗(tk) =
Rh∗(T̃ )(tk)

T e − T̃k

for k = 0, 1, . . . , n, we obtain the main result of this section:
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Theorem 3.8 If H ∈ C1([T0, T
e]) and T̃ ∈ C([t0, tf ]) satisfies (34) with 0 < δ <

µ

2
, then

max
k=0,1,...,n

∣∣∣H(T̃k)− H̃k

∣∣∣ ≤ δ ||H ′||C([T0,T e])

+
1

µ− 2δ

(
522M3

(T e − T0 + µ− 2δ)2

(µ− δ)2
δ2
) 1

3

. 2

3.3.3 Identifying from a finite number of approximated values of the temperature.

We assume that the interpolation method used is such that the error δ between T and T̃ is of the same
order of magnitude as the measurement error δ̂.

For example, if T̃ is the piecewise linear interpolation of measurements {T̂0, T̂1, . . . , T̂p} and we denote
Tint the piecewise linear interpolation of values of T at points τk, the monotonicity of T provides∣∣∣∣∣∣T − T̃

∣∣∣∣∣∣ ≤ ||T − Tint||+
∣∣∣∣∣∣Tint − T̃

∣∣∣∣∣∣ ≤ max
1≤k≤p

|T (τk)− T (τk−1)|+ δ̂

≤ max
1≤k≤p

(
|T̃ (τk)− T̃ (τk−1)|+ 2δ̂

)
+ δ̂ = max

1≤k≤p
|T̂k − T̂k−1|+ 3δ̂.

Therefore, when the interpolation considered is the piecewise linear interpolation, if the difference between
consecutive measurements is of order δ̂, then δ and δ̂ are of the same order of magnitude. The number of
measurements will be increased if needed.

Remark In order to adapt to this scenario the analysis in Remark 3.3.2, it suffices to choose the operator’s
family Rh : C([t0, tf ]) → C([t0, tf ]) defined as

Rhy =
Rh(Ih(y))

T e − Ih(y)
,

where Ih is the interpolation operator used for T̃ . If

lim
h→0

||Ih(y)− y||C([t0,tf ]) = 0 for all y ∈ C([t0, tf ])

(for example, if Ih is the piecewise linear interpolaction operator) then Rh is a regularization strategy for
the operator K. 2

The algorithm proposed is an adaptation of the introduced in Section 2.3.3 with suitable modifications.

The input data are the temperature measurements {T̂0, T̂1, . . . , T̂p}, the measurement error bound δ̂
and the admissible threshold µ > 0. The algorithm starts defining the function T̃ , interpolation of values
{T̂k}pk=0. Then, a bound of the interpolation error δ > 0 is determined. Next, the final instant tf is computed
by using (22) with the appropriate value of µ.

After that, an iterative process starts from a guess value of time step h. Through it, we define the instants

tk = t0 + kh, k = 0, 1, . . . , n, where n is the integer part of
tf − t0
h

. Then, the values T̃k = T̃ (tk) are
obtained.

Next, an approximation Λ3 of the maximum norm of the third derivative of temperature is computed as
the maximum absolute value of quantities

−5T̃k + 18T̃k+1 − 24T̃k+2 + 14T̃k+3 − 3T̃k+4

2h3
, k = 0, 1

T̃k+2 − 2T̃k+1 + 2T̃k−1 − T̃k−2

2h3
, k = 2, 3, . . . , n.

(37)
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We note that the values T̃n+1 = T̃ (tn+1) and T̃n+2 = T̃ (tn+2) are well defined if the choice of tf has
enough measurements left out. Otherwise, we will use the same regressive formula as in (14).

From this value Λ3 a new time step

h =

(
12(T e − T0 + µ− 2δ)

29(µ− δ)Λ3
δ

) 1
3

, (38)

is computed, and so on.

Again, the process stops when two consecutive values of h are close. From the final value of h, the
corresponding instants tk, interpolation T̃ and the quotients

H̃k = ũh(tk) =
Rh(T̃ )(tk)

T e − T̃k
, (39)

are computed. These quantities approach the values of H in the temperatures T̃k, for k = 0, 1, . . . , n.

Algorithm

DATA {T̂k}pk=0: Temperature measurements at times {τk}pk=0.
δ̂ > 0: bound of measurements errors.
µ > 0: threshold considered.
ε: stopping test precision.
h: guess value of h∗.

Step 1: Determine T̃ and δ according to δ̂.
Step 2: Compute tf as in (22) adapting, if needed, the value of µ.
Step 3: While the relative error in h is greater than ε:

a) Determine the new discrete instants {tk} and compute {T̃k}.
b) Compute Λ3 as the maximum absolute value of (37).
c) Compute the new value of h as in (38).

Step 4: Obtain the final discrete instants {tk} and the values {T̃k}.
Step 5: Compute the approximations H̃k according to (39).

3.4 Numerical results. Comparison between the methods
Before describing the example on which the three algorithms studied have been tested, we make some

considerations about the nondimensionalization of the problem.

3.4.1 On the nondimensional problem

By mimicking what was done in Section 2.4, we take the dimensionless temperature vanishing at the
lower value of the original temperature (there T e, here T0). Now, we consider the dimensionless variables

t∗ =
t− t0
tf − t0

and T ∗(t∗) =
T (t)− T0
T e − T0

.

By denoting

H∗(s) = (tf − t0)H
(
(T e − T0)s+ T0

) (
⇒ H∗(T ∗(t∗)) = (tf − t0)H(T (t))

)
,

the equivalent nondimensional problem is given by
dT ∗

dt∗
(t∗) = H∗(T ∗(t∗))(1− T ∗(t∗)), t∗ ∈ (0, 1)

T ∗(0) = 0.

(40)
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Note that problem (40), at a first glance, does not depend of any parameter; however, further analysis shows
that this is not true. The identification ofH should be used to find the temperature corresponding to different
values of the initial (higher T0) and ambient (lower T e) temperatures. Without loss of generality, we can
assume fixed the initial temperature; in addition, we take an external temperature T e with T0 < T e < T e,
and we assume that the evolution time reaches the value tf . The nondimensional problem for this situation
is 

dT ∗

dt∗
(t∗) = H∗(T ∗(t∗))(T ea − T ∗(t∗)), t∗ ∈ (0, 1)

T ∗(0) = 0,

(41)

where
T ea =

T e − T0
T e − T0

.

So, the different situations can be described by solving the problem (41) for the values of parameter T ea

between zero and one.

3.4.2 Comparative study of the numerical results

Here we present the results obtained when solving an example, using the three methods described in
this section applied to the nondimensional problem (40). The data for numerical tests have been obtained
as in Section 2.5 by considering

H(s) = 2 exp(s).

Again, for ease of comparison, we have chosen the same seven perturbations of temperature and we have
selected the two that produce the smallest and largest error inH . This error is measured in standard L2 norm
for the Morozov’s principle and Landweber methods and in maximum norm for the iterative algorithm.
We identify H with each of the three methods and we compute the corresponding temperature by taking
T ea = 1. Also, we solve the problem using this identification, shrinking the parameter T ea by factors
d = 0.75, 0.50 and d = 0.25. The solution computed this way is compared with the corresponding exact
temperature (the error in temperature is always measured in maximum norm). The label “% Error” in the
titles of figures, means the same as in Section 2.5.

We use piecewise linear interpolation for function T̃ . Every definite integral has been computed by
the trapezoidal rule based on the measurements instants. Therefore, this calculations do not depend on the
interpolation method used.

The initial value of threshold is chosen as µ = 0.2. Once the function T̃ is constructed, we correct this
value as described in Section 3.1 in order to determine the final time tf according to (22).

First method: Discrepancy principle of Morozov

For the Morozov discrepancy principle, in order to obtain the value of parameter α, we approximate the
solution of (30) by applying the secant method to the function

F (α) = ||Kuα,δ − yδ||2L2(t0,tf )
− (e(δ))2,

where uα,δ is stated in Proposition 3.4 and yδ and e(δ) are given in (26) and (27), respectively.

As we can seen in Figure 5, this method provides a large error in the identification of H (when com-
paring to the results showed in Figures 6 and 7). Moreover, this identification is not very good since the
approximate temperatures are relatively far from the exacts with high relative errors (compare again to
Figures 6 and 7).
Second method: Landweber iterative method

We have chosen λ =
0.9

t2f
in the iteration (31), according to Remark 3.2.2. For other values of this pa-

rameter (within the allowable range) the results are very similar. Figure 6 shows the results when applying
Landweber method. This method exhibits a behavior slightly better than the previous one in the identifica-
tion of H but much better in T , although they still appear not very small errors in the approximation of the
temperature (compare to Figure 7).
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Figure 5: Morozov’s discrepancy principle. (Top: smallest error in H . Bottom: largest error in H)

Third method: Iterative algorithm

Figure 7 suggests that this method provides very good results: the error in the identification of H is
the same order of the error in Landweber method (each one measured in the corresponding norm) and the
relative error in temperature is lower than 1% (size of the perturbations). Also, we remind that this method
avoids the vanishing at tf property of the previous ones (see Remark 3.2.1). Therefore, we can conclude
that this algorithm is well adapted to the problem considered and improves the presented algorithms based
on the Classical Theory, from a qualitative and quantitative point of view.

Table 3: % Error for the considered methods and the cases of smallest (above) and largest (below) error in H .

Method Factor over parameter T ea

d = 0.75 d = 0.50 d = 0.25
Morozov 2.89 3.74 5.27

Landweber 0.52 0.65 0.56
Iterative algorithm 0.25 0.31 0.56

Morozov 2.72 3.61 5.19
Landweber 0.72 0.88 0.71

Iterative algorithm 0.68 0.91 1.77

Table 3 shows the results obtained when the value of T ea is reduced by a factor d. Clearly, the Morozov’s
discrepancy principle method provides much worse results than those obtained by the other two methods.
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Figure 6: Landweber iterative method. (Top: smallest error in H . Bottom: largest error in H)

The errors in Landweber method and the iterative algorithm are of the same order of magnitude.
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